Проект

Общее

Профиль

Support

Миграция x86 на Power

Аналог функций IMSL

Требуется найти аналог для функций из библиотеки IMSL.

  • DELE This function evaluates the complete elliptic integral of the second kind E(x). X — Argument for which the function value is desired. (Input) X must be greater than or equal to 0 and less than or equal to 1.
  • ELRF This function evaluates Carlson’s incomplete elliptic integral of the first kind RF(X, Y, Z). X — First variable of the incomplete elliptic integral. (Input) It must be nonnegative Y — Second variable of the incomplete elliptic integral. (Input) It must be nonnegative. Z — Third variable of the incomplete elliptic integral. (Input) It must be nonnegative
  • ELRD This function evaluates Carlson’s incomplete elliptic integral of the second kind RD(X, Y, Z). X — First variable of the incomplete elliptic integral. (Input) It must be nonnegative. Y — Second variable of the incomplete elliptic integral. (Input) It must be nonnegative. Z — Third variable of the incomplete elliptic integral. (Input) It must be positive.
  • ZERFE This function evaluates a scaled function related to ERFC. Z — Complex argument for which the function value is desired.
  • DMUCRV Multiplies a complex rectangular matrix by a complex vector. A — Complex NRA by NCA rectangular matrix. (Input) X — Complex vector of length NX. (Input) Y — Complex vector of length NY containing the product A*X if IPATH is equal to 1 and the product trans(A)*X if IPATH is equal to 2. (Output)
  • DLINCT Computes the inverse of a complex triangular matrixs. A — Complex N by N matrix containing the triangular matrix to be inverted. (Input) For a lower triangular matrix, only the lower triangle of A is referenced. For an upper triangular matrix, only the upper triangle of A is referenced.
  • AINV — Complex N by N matrix containing the inverse of A. (Output) If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is also upper triangular. If A is not needed, A and AINV can share the same storage locations.

GSL

Замечание. Уточнить насчет поддержки в GSL функций с комплексным аргументом. Также есть сомнение в производительности этой библиотеки.

Можно посмотреть GSL - GNU Scientific Library. В base есть gsl.ppc64le 1.15.

  • Elliptic Integrals
    • gsl_sf_ellint_Ecomp These routines compute the complete elliptic integral E(k) to the accuracy specified by the mode variable mode. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2.
    • gsl_sf_ellint_RF These routines compute the incomplete elliptic integral RF(x,y,z) to the accuracy specified by the mode variable mode.
  • "Special Functions":