Support¶
Миграция x86 на Power¶
Аналог функций IMSL¶
Требуется найти аналог для функций из библиотеки IMSL.
- DELE This function evaluates the complete elliptic integral of the second kind
E(x)
. X — Argument for which the function value is desired. (Input) X must be greater than or equal to 0 and less than or equal to 1. - ELRF This function evaluates Carlson’s incomplete elliptic integral of the first kind
RF(X, Y, Z)
. X — First variable of the incomplete elliptic integral. (Input) It must be nonnegative Y — Second variable of the incomplete elliptic integral. (Input) It must be nonnegative. Z — Third variable of the incomplete elliptic integral. (Input) It must be nonnegative - ELRD This function evaluates Carlson’s incomplete elliptic integral of the second kind
RD(X, Y, Z)
. X — First variable of the incomplete elliptic integral. (Input) It must be nonnegative. Y — Second variable of the incomplete elliptic integral. (Input) It must be nonnegative. Z — Third variable of the incomplete elliptic integral. (Input) It must be positive. - ZERFE This function evaluates a scaled function related to ERFC. Z — Complex argument for which the function value is desired.
- DMUCRV Multiplies a complex rectangular matrix by a complex vector. A — Complex NRA by NCA rectangular matrix. (Input) X — Complex vector of length NX. (Input) Y — Complex vector of length NY containing the product
A*X
if IPATH is equal to 1 and the producttrans(A)*X
if IPATH is equal to 2. (Output) - DLINCT Computes the inverse of a complex triangular matrixs. A — Complex N by N matrix containing the triangular matrix to be inverted. (Input) For a lower triangular matrix, only the lower triangle of A is referenced. For an upper triangular matrix, only the upper triangle of A is referenced.
- AINV — Complex N by N matrix containing the inverse of A. (Output) If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is also upper triangular. If A is not needed, A and AINV can share the same storage locations.
GSL¶
Замечание. Уточнить насчет поддержки в GSL функций с комплексным аргументом. Также есть сомнение в производительности этой библиотеки.
Можно посмотреть GSL - GNU Scientific Library. В base есть gsl.ppc64le 1.15.
- Elliptic Integrals
- gsl_sf_ellint_Ecomp These routines compute the complete elliptic integral
E(k)
to the accuracy specified by the mode variable mode. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2. - gsl_sf_ellint_RF These routines compute the incomplete elliptic integral
RF(x,y,z)
to the accuracy specified by the mode variable mode.
- gsl_sf_ellint_Ecomp These routines compute the complete elliptic integral
- "Special Functions":
- Error function
- Complementary Error Function
- gsl_sf_log_erfc These routines compute the logarithm of the complementary error function